Revolutionary Space Transfer Propulsion Technologies for Human Exploration and Development August 1999 Decadal Planning Team Les Johnson Dennis Bushnell Julie Kramer Alan Wilhite # In-Space Propulsion Solar Thermal and Solar Sails | Propulsion Option | Benefit to Human
Exploration | Issue | Tech | hnologies | TRL
Robot/Human | | |-------------------|---|---------------------------|---|---|--|--------| | Solar Thermal | Transfer cargo from to GEO or nuclear so orbit | | Ability to inflate concentrator and control focal point location duri the mission | ol m
ing Ac
co
Cr | eliable High Temperature
naterial engine
ccurate inflatable
oncentrators/supports
yogenic fluid management for
0 days | 5
r | | Solar Sails | Cargo vehicles for
Piloted exploration
of the solar system; piloted
sailcraft for intersteller and
Solar system exploration | 100m
Feasib
Sails 0 | ility of making sails that are to 100-km-dia and 1-20 g/m²; ility of making >1000-m-dia .1 g/m² and using 10 ⁹ -10 ¹² Wee-based laser power | up to 100-1
10 ⁹ -10 ¹² W
0.1-20 g/m
High temp | , 100- m2 sails to deploying km-dia sails 0.1 g/m ² Vspace-based laser power lear-resistant materials erature sail materials ant of Gossamer structures | 0- | # In-Space Propulsion Multimegawatt Electric Propulsion | Propulsion Option | Benefit | Issues | Technology 1 | TRL | |--------------------|--|---|---|--| | 1 Topulsion Option | Belletit | issues | Technology 1 | Robotic/Human | | • Ion Thruster | -high specific impulse
-long lifetime
-high efficiency
-applicable to
interplanetary and
interstellar missions | -high/extremely high
voltage
-high-voltage solar arrays
if solar power is used
-PMAD, PPU
-propellant management
-ion grid design and
material | -molybdenum grids -carbon-carbon grids -field emitter array cathodes -lightweight engine body -low flow cathodes -advanced materials -high power PPU and PMAD | •TRL 7-9 (present
status, DS-1)
•TRL 2-4 human
•TRL 3-6 robotic | | Hall Thruster | -high specific impulse -high efficiency -high thrust (compared to Ion) -orbit-raising heavy payloads -applicable to fast Mars precursor, interplanetary and interstellar missions | -PPU (magnets/engine)
-propellant management
-electrode erosion/material
issues | -high power PPU and
PMAD
-low flow cathodes
-lightweight engine body
-advanced materials | •TRL 4-6 | | • MPD | -extremely high thrust -low specific mass -orbit-raising heavy payloads -fast robotic outer planet missions -moderate specific impulse -high efficiency operates with a variety of propellants | -high currents -cathode lifetime -S/C contamination if lithium is used -propellant management (lithium/hydrogen) -PPU -power management and distribution -high power thermal management | -advanced materials for
electrodes and body
(refractory metal)
-high power PPU and
PMAD | •TRL 3-4 | | • PIT | -high specific impulse -variable specific impulse -operates with a variety of propellants -high efficiency -applicable to interplanetary and interstellar missions -orbit-raising heavy payloads -low specific mass -potential for high thrust | -extremely high voltages and currents (very high power system) -switch repetition rate -PMAD, PPU -propellant feed system and management -pulsed power network/architecture -thermal management -component wear | -switch technology -high repetition switching -high power capacitors -propellant valves with extreme sharp rise times -propellant delivery and distribution system -PMAD -materials | •TRL 2-4 | # In-Space Propulsion Multimegawatt Electric Propulsion, Continued | Propulsion Option | Benefit | Issues | Technology 1 | TRL | |--------------------------|---|--------|------------------|--------------------------| | | | | | Robotic/Human | | • VaSIMR | -variable thrust -variable specific impulse -high specific impulse -high thrust -applicable to interplanetary and interstellar missions | | -superconductors | TRL 2-4 (present status) | | Helicon | | | | | ## In-Space Propulsion Aeroassist | Propulsion Option | Benefit to Human
Exploration | Issue | Technologies | TRL
Robot/Human | |--------------------------------------|--|--|---|---| | Aeroassist Aerocapture Aerogravity | Up to 35% mass reductionG-limited entriesPrecision landing | Higher L/D (> 0.25) vehicles Efficient packaging and CG control Accurate atmospheric models | •GN&C, Structures,
Thermal Protection,
Aero/aerothermal | Aerocapture: 5 / 3 Aeroentry: 6 / 4 Precision Landing: 6
after MSP '01/ 3 | | Solar Environment | No human mission applications foreseen | •High L/D vehicles | •Thermal Protection,
High-Temp
Structures, GN&C | •Currently 2 / n/a | | Solar Thermal | | | | | | Solar Sails | | | | | | Minimagnetospheric | | | | | | Magsails | | | | | | | | | | | | | | | | | # In-Space Propulsion Tethers | Propulsion Option | Benefit to Human Exploration | Issue | Technologies | TRL
Robot/Human | |--------------------------|--|---|---|--------------------| | Electrodynamic | Propellantless Earth and Jovian Orbit Propulsion | High Current Emission Tether Survivability | Field Emitter Array Cathodes
Long-Life Tethers | 6/6 | | Momentum Exchange | Propellantless, reusable space infrastructure for LEO-to-beyond missions | High facility cost
Rendezvous and Capture (for
some apps)
Tether Survivability | Long-life, high strength-to-
weight tethers
Automated Rendezvous and
Capture | 5/5 | | Orbit-to-Orbit Elevators | Low-cost atmosphere to higher-orbit transportation | High facility cost Tether survivability Orbit maintenance | Long-life, high strength-to-
weight tethers | 2/2 | | | | | | | ## Fission Based Propulsion | Propulsion Option | Benefit to Human
Exploration | Issue | Technologies | TRL
Robot/Hu | uman | |------------------------|--|--|--|-----------------|----------------------------------| | Nuclear Electric | - Advanced NEP systems
enable rapid access to all
points in solar system. | High specific power (>0.1 kW/kg) required for crewe applications. | Coupling fission energ d propellant. Waste hea | • | 5/3 | | Nuclear Thermal | - NTR reduces launch mass
and complexity of inner
solar system missions. | Demonstrated fuels enable 850 s Isp. Solid-core Isp limit < 1000 s. | High-temperature, long System integration. | g-life fuel. | 6 at 850 s Isp
3 at 950 s Isp | | Nuclear Ramjet | - Nuclear Ramjet greatly increases effective ETO Isp, potentially yielding high-performance SSTO. | Operations / reusability.
Ultra-high power density
core design. Safety during
launch accidents. | Fuels, materials, heat t | ransfer. | 4 | | External Pulsed Plasma | - Nuclear pulse gives rapid access to any point in solar system. High thrust, potential Isp >> 10,000 s. | Efficient system must utiliz
large (>1E14 J) pulses. | ze Efficiently coupling pu
spacecraft. | ılse to | 4 | | | | | | | | | | | | | | | # In-Space Propulsion Magsails | Propulsion Option | Benefit to Human Exploration | Issue | Technologies | TRL
Robot/Human | |---------------------------------------|---|--|---|--------------------| | Solar wind acting on magnetic "sails" | High specific impulse for space transportation in the inner solar system, potential high speed transportation | Control of thrust
magnitude and
direction, deployment
and operation of large
superconducting loop,
power source for loop
current | Large high temperature superconducting material for "sail" loop (carbon nanotubes), deployment deployment and spacecraft control systems, power supply for loop current | 6/3 | Minimagnetospheric ## **Fusion Based Propulsion** | Propulsion Option | Benefit to Human Exploration | Issue | Technologies | TRL
Robot/Human | |---|---|--|--|--| | Fusion Plasma
(direct fusion to
propulsion
conversion) | Very high Isp capability (> 50,000 s) Very short trip time Non-radioactive Environmentally benign Inexhaustible, low-cost fuel from Earth Fuel collectible from lunar base, other planets and asteroids | Attainment of practical fusion gain (> 1) Active NASA's engagement in developing fusion science and technologies pertinent to propulsion application | Fusion Pulsed power Energy storage High magnetic fields Magnetic nozzle Plasma acceleration Stable magnetic and plasma structures Disposable first wall (liquid wall) | 3/3
5/5
4/4
3/3
3/3
3/3
3/3
2/2 | | Fusion Electric | High Isp capability (> 10,000 s) Short trip time Non-radioactive Environmentally benign Inexhaustible, low-cost fuel from Earth Fuel collectible from lunar base, other planets and asteroids | Attainment of practical fusion gain (> 1) Active NASA's engagement in developing fusion energy pertinent to propulsion application | Fusion Pulsed power Energy storage High magnetic fields Plasma acceleration Stable magnetic and plasma structures Disposable first wall (liquid wall) High efficiency direct plasma-electric conversion | 3/3
5/5
4/4
3/3
3/3
3/3
2/2
3/3 | ## Fusion Assist Nuclear Propulsion | Propulsion Option | Benefit to Human Exploration | Issue | Technologies | TRL
Robot/Human | |--|---|--|---|--| | Fusion Assist Fusion/fission hybrid Q-less-than-1 fusion schemes | Moderately high Isp capability (> 5,000 s) Greatly reduced trip time over nuclear fission based rockets Reduced radioactivity Environmentally more acceptable Extensive, low-cost fuel reserves from Earth Shorter R&D path | Attainment of required fusion gain Fusion/fission engineering interface | Fusion Pulsed power Energy storage Neutronics Plasma acceleration Stable magnetic and plasma structures Disposable first wall (liquid wall) | 3/3
5/5
4/4
4/4
3/3
2/2 | ## Electric Propulsion - Description - Electric propulsion provides high performance systems using solar or nuclear energy conversion - Ion systems provide highest delta-V for deep space missions - Hall thrusters provide higher thrust than ion systems, good application for orbit raising missions and some planetary transfer missions. - Application(s) - LEO to GEO, Lunar, interplanetary, Mars - General Benefit(s) - High Isp, up to 3600s - Multiple applications - Limitations/Issues - Low thrust systems, applicable to mission phases up to human transportation - Near-Term (within 10 years) Impact If Adequately Funded - TRL Status for Human Exploration Use: - 6 8 - Potential for non-minimum energy propulsion? - Benefit for human exploration? - Potential for providing orbit raise to GEO, rendezvous with Crew for remainder of mission. - Can provide cargo transfer to planetary destinations, to await crew arrival ### Aeroassist - Description - Use of aerodynamic forces during atmospheric flight to accomplish transportation functions - Disciplines involved include: - Aero/aerothermodynamics - Guidance, Navigation and Control - Structures - Thermal Protection Systems - Vehicle Design/Configuration #### Application(s) - Aerocapture for orbital insertion about a planet (robotic and human) - first use by MSR '05 Orbiter - Aeroentry for descending to a surface (robotic and human) - common at Earth, but aeromaneuvering at Mars will be first performed by MSP '01 - Aerobraking for adjusting orbits (robotic, human cargo missions due to long time) - used by Mars Global Surveyor - Precision Landing for acquiring specific sites (robotic and human) - first use by MSP '01 (10 km accuracy) - Aerogravity Assist for diminishing flight times to outer planets (robotic missions) - General Benefit(s) - Aerocapture enables some robotic missions to outer planets - Aerocapture reduces LEO mass by up to 35% (over propulsive capture) for humans - Enables G- and heat-rate-limited profiles - Limitations/Issues - Higher L/D (> 0.25) vehicles needed - Efficient packaging and CG control - Dependent on accurate atmospheric models #### Near-Term (within 10 years) Impact If Adequately Funded TRL Status for Human Exploration Use: TRL=7 by 2009 if shape and H/W are human-like Benefit for human exploration? 35% mass reduction in low Earth orbit Safe landing near predeployed surface resources Enables G-limited trajectories ## Solar Thermal Propulsion - Description - Uses solar concentrators to heat propellant (LH₂) and provide high performance (Isp ~ 900 sec) thrust. - Uses lightweight thin-film concentrators deployed on orbit, lowers system mass. - High temperature thruster, no combustion, simple propellant heating and expansion to produce thrust - Flight demonstration funded by Air Force for orbit transfer system, 2002 - Application(s) - LEO-to-GEO, Lunar Transfer, other applications need study - General Benefit(s) - Bi-Modal system can provide both Propulsion and power - Low mass system reduces launch costs - Limitations/Issues - Low thrust system 50lbf, slow human mission - Missions limited to close solar distances - Near-Term (within 10 years) Impact If Adequately Funded - TRL Status for Human Exploration Use: - 9 - Potential for non-minimum energy propulsion? NO - Benefit for human exploration? - Potential for cargo transfer vehicle to support human missions ## Solar Sail Propulsion - Description - Solar photon pressure used to push (via photon momentum transfer) a large, thin sail - Sail diameters > 70 m required; 0.1 20 g/m² density - Application(s) - Light-weight payloads (~200 kg) to solar system destinations - Non-Keplerian 'hanging orbits' near Earth and/or L1 - General Benefit(s) - Requires no propellant - Enables rapid travel with close solar approach trajectories (> 15 AU/year) - Limitations/Issues - Sail sizes may be practical for only small payloads (< 500 kg) - TBD - Near-Term (within 10 years) Impact If Adequately Funded - TRL Status for Human Exploration Use: - 7-8 - Potential for non-minimum energy propulsion? YES - Benefit for human exploration? - Potential for rapid payload transfer throughout the solar system using existing Earth launch infrastructure. ## Electrodynamic Tether Propulsion #### Description - Long (>5 km) thin tether deployed from spacecraft to interact with magnetic field and ionosphere - Power supply used force current through tether - Downward current I produces thrust force F to boost spacecraft or change its inclination - Current I produces magnetic force dF on each tether section dl: dF = dI X B_{North} - Application(s) - Low Earth orbit boost, deboost and inclination changes (<2300 km) - Jovian Exploration - General Benefit(s) - Requires no propellant - Reusable - Low-cost - Limitations/Issues - Can only operate in low orbits - Operations complexity during rendezvous - Near-Term (within 10 years) Impact If Adequately Funded - TRL Status for Human Exploration Use: - 8-9 - Potential for non-minimum energy propulsion? NO - Benefit for human exploration? - Orbit maintenance of large, highpower facilities in Earth orbit (space station; assembly stations) ## Momentum Exchange Tether Propulsion - Description - Rotating tether in orbit can catch a payload in a lower orbit and "toss" it into a higher orbit or Earth escape - Tether "gives" some of its momentum & energy to payload - Use ED tether, SEP, or return traffic (energy conservation) to restore orbit - Application(s) - LEO-to-MEO, GEO, Lunar (orbit and/or surface) or Mars - Circularization and/or course correction propulsion also required - General Benefit(s) - Requires little propellant - Reusable over many missions - Allows system for forward and return traffic by establishing an in-space infrastructure. - Limitations/Issues - Rendezvous is challenging - Human safety - Near-Term (within 10 years) Impact If Adequately Funded - TRL Status for Human Exploration Use: - 7-8 - Potential for non-minimum energy propulsion? YES - Benefit for human exploration? - Potential for near-propellantless inspace infrastructure of rotating tether facilities passing payloads to and from 'destinations' ### Nuclear Electric Propulsion Module test for potential first-generation fission energy source. An 8200 Hour Test of an Ion Thruster (courtesy JPL). #### Description - Energy from fission is converted to electricity. Electricity is used to accelerate propellant to velocities up to (and exceeding) 30 km/s. - Numerous options exist for both the fission energy source and the propulsion subsystem. #### Application(s) - Any desired payload to any solar-system destination. - High-efficiency orbit changing / maintenance. - Rendezvous and sample return. #### General Benefit(s) - Requires very little propellant. - Safe, virtually non-radioactive at launch. - Unaffected by solar proximity or orientation full thrust capability at all locations. #### Limitations/Issues - Political concerns with use of any nuclear technology (fission, fusion, antimatter). - First-generation systems relatively low-cost. Man-rated systems will require significant development. #### Near-Term (within 10 years) Impact If Adequately Funded - TRL Status for Human Exploration Use: - 6-8 - Potential for non-minimum energy propulsion? YES - Benefit for human exploration? - Second or third generation systems (< 10 kg/KW) enable rapid, efficient trips to Mars and other solar-system destinations. - Highly efficient cargo transfer. ## **Nuclear Thermal Propulsion** Phoebus 2A (1968) #### Description - Energy from fission used to heat propellant, no chemical reaction required. Low molecular weight propellant (e.g. H₂) yields high Isp (>800 s). - Potential for thrust-to-weight >5. #### Application(s) - Moderate thrust (> 100 N) applicable to unmanned missions. Planetary exploration, asteroid rendezvous. - High thrust (> 10 kN) applicable to human Mars exploration, lunar and asteroid missions. #### General Benefit(s) - Double Isp of chemical systems. - Safe, virtually non-radioactive at launch. - Reduce mission time and launch mass. #### • Limitations/Issues - Political concerns with use of any nuclear technology (fission, fusion, antimatter). - First-generation systems relatively low-cost. Secondgeneration systems will require significant nuclear-fuels and other development. #### Near-Term (within 10 years) Impact If Adequately Funded - Use of first-generation system on unmanned mission. Man-rated system brought to TRL 6 - 8. - Potential for non-minimum energy propulsion? YES - Benefit for human exploration? - Reduce mission time and/or launch mass for human missions to the moon, Mars, or asteroids. ## **External Pulsed Plasma Propulsion** GABRIEL Mark I #### Description - High energy nuclear pulse units are ejected from vehicle, producing a thin plasma shell expansion that is coupled to the vehicle by a mechanical or magnetic momentum transfer mechanism. - Specific Impulse of 3000 sec. Minimum, with 10,000 sec. possible and thrust-to-weight ratios of 1 to 5. #### Application(s) - GABRIEL class vehicle (<50 tons) fast manned Mars missions, asteroid/comet rendezvous and deflection, lunar heavy transport and solar system exploration. - Large vehicle (hundreds of tons) applicable to manned and unmanned missions for deep solar system exploration and interstellar travel. #### General Benefit(s) - Best thrust and Isp with known technology. - Fast, reliable, reusable and least Mars mission cost. - Order of magnitude performance increase in future versions (scales "bigger is better") #### Limitations/Issues - Political concerns with use of any nuclear technology (limited nuclear operation near Earth). - Near-Term (within 10 years) Substantial Impact If Adequately Funded - Man-rated system brought to TRL-7. - Potential for non-minimum energy propulsion? YES - Benefit for human exploration? - Increased safety for humans through reduced trip times. ### Mini-Magnetospheric Plasma Propulsion #### Description - Create a magnetic bubble around and attached to a spacecraft that will then be carried by the solar wind. - Low energy plasma is used to inflate the magnetic field to produce a large cross-section (15-30 km) for a force of about 1 N and an ISP of 30,000-80,000 - Use SEP with an innovative plasma and magnetic field configuration. - Application(s) - Interstellar Precursor Mission - Faster, cheaper missions to the planets, including Mars - Sun-Synchronous Orbiter - General Benefit(s) - Light weight and requires power that can be handled by existing SEP systems - Easy implementation with no mechanical parts - High speeds of between 50-100 km/s can be attained - Limitations/Issues - EM noise, efficiency of systems - Navigation - Near-Term (within 10 years) Impact If Adequately Funded - TRL Status for Human Exploration Use: - 6-7 - Potential for non-minimum energy propulsion? YES - Benefit for human exploration? - Facilitate easy access to the planets and beyond the solar system ## Magsails #### Description - Cable of superconducting material, millimeters in diameter, which forms a hoop that is tens to hundreds of kilometers in diameter. - The current loop creates a magnetic dipole which diverts the background flow of solar wind. This deflection produces a drag-force on the MagSail radially outward from the sun. - Proper orientation of the dipole may produce a lift-force which could provide thrust perpendicular to the radial dragforce. - Application(s) - Interplanetary Propulsion - General Benefit(s) - Requires no propellant - Potentially reusable - Limitations/Issues - Thermal control, structures, radiation, superconductor technology, attitude control, and deployment - Near-Term (within 10 years) Impact If Adequately Funded - TRL Status for Human Exploration Use: - 6 - Potential for non-minimum energy propulsion? - Benefit for human exploration? - Potential for rapid payload transfer throughout the solar system ## Very High Power Electric Thrusters - Multi-Mega Watt Class Electric Thrusters - May have relatively high thrust levels, Isp and alpha (kg/kW) to enable robust and routine interplanetary human missions VASIMR (Variable Specific Impulse and Thrust at maximum power) Magnetoplasmadynamic (MPD) thrusters Inverse Hall Thruster (a Russian concept for a megawatt Hall thruster) Helicon - Pulsed Inductive Thruster - All of these concepts need significant work